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I. INTRODUCTION

Previous analyses of antenna surface errors have assumed that errors are

distributed randomly. Such random distribution is a reasonable model for

manufncturing errors in a rigid structure such as an aluminum reflector

antenna. However, as large space-based phased-array antennas must be both

lightweight and deployable, they are consequently not rigid and thus undergo

dynamic deformations in orbit. Because these deformations are typically

expressed in terms of the mechanical modes of the structure, the errors in the

array-element positions can be expressed discretely as mechanical modes of

surface position. These mechanical deformations vary slowly with time, so

that the radiation performance can be computed from a "frozen" mechanical

deformation.

When the time-varying deformations are expressed as a sum of the mechan-

ical modes weighted by their individual time-phased amplitudes, the radiation

pattern of an array distorted by a single, "frozen" mechanical mode can be

analyzed. In this way, the relationship between individual mechanical modes

and the distorted radiation pattern can be observed. As the actual modal sum

depends on the specific array design, single-mode analysis indicates those

mechanical modes that should be optimized in the array design to minimize the

pattern distortion.

Closed-form solutions for the radiation patterns of uniformly illuminated

arrays having modal deformations are developed (1) for small-amplitude deform-

ations, (2) in terms of Bessel functions at discrete angles, and (3) in terms
of paired echoes of the undistorted array pattern; these solutions are com-

pared with the antenna-tolerance theory developed by Ruze.1  In addition, the

pattern distortions for arrays having tapered illuminations are computed.



ii. ANALYSIS OF MECHANICALLY DEFORMED ARRAYS

The array geometry illustrated in Fig. 1 is ideally planar in the x-y

plane. Mechanical deformation results in element displacements in the plane

and normal to the plane; however, the array pattern is decoupled from the

in-plane displacements. Consequently, only the element displacements in the

z-direction will be analyzed. At the far-field angle (8,¢), the contribution

of a single element, including its phase, is

Vi(e,o) = a (e,o)expjjk[sine(xicoso + yisino) + z(xi,Yi)cose]} (1)

where ae (,) is the pattern of a single element at the position [xi,yiz(xiyi)].

The pattern of the array is the sum of the phase contributions of the individual

elements:

V(e,() = IA(xi,Yi)exp{jk[sine(xicos¢ + yisino) + z(xiYi)cos6]} (2)
i 1

where A(x,y) is the illumination function. Generally, antenna patterns are

computed for a particular plane of interest, and the geometry of the planar

array is compressed into an equivalent linear array to compute that pattern

conveniently. However, an additional assumption must be made to compress a

planar array having element displacements that are normal to the array plane.

For the pattern pidne 4 = (00,1800), the normal displacements of the array

elements are assumed to vary in the x direction only, and the illumination

amplitudes are assumed to vary in the x direction, independently of y. The

pattern of the equivalent linear array is

V(e) : A(x )exp{jk[±x.sine + z(x )cos8]} (3)
i 1

For a large array with close element spacing, the array pattern may be

approximated by the integral

L
V(e) :f A(x)exp{Jkf± xsin8 + z(x)coseb]dx (4)

-L
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TOP VIEW

-.- X x

SIDE VIEW

PLANAR ARRAY WITH MODAL ERRORS

Figure 1. Array Geometry with Oblique, Top, and Side Views
for a Deformed Rectangular, Planar Array
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where 2L is the x dimension of the array. Sections II.A and B apply Eq. (4)

to uniformly illuminated arrays having random and deterministic deformations.

A. RANDOM DEFORMATIONS

The standard antenna-tolerance theory developed by Ruze I models random

surface errors as phase errors having a Gaussian density, then computes the

radiation pattern and gain loss in a statistical sense. To compute the

directivity in the more general case involving phase and amplitude errors, one

must assume that the power density in a specific direction does not correlate

with the total radiated power.2 The random analysis is summarized for

comparison with the deterministic-error model.

Ruze defines the amplitudes of the surface errors by two functions:

(1) the Gaussian probability-density function, and (2) a correlation function.

The Gaussian function specifies the density of phase-error values, and the

correlation function specifies the likelihood that two phase errors on differ-

ent sections of the surface will have equal values. Ruze suggests several

forms of correlation functions, the simplest being the "hat box." The hat-box

correlation function, illustrated in Fig. 2, is a pulse function that has the

value 1 in a correlation region and the value 0 outside that region; within

the correlation region the values are equal, and outside the region they are

uncorrelated.

As the phase-error values are proportional to the deformation amplitudes

of the array, one can extend this tolerance theory to the phase-error values

generated by the mechanical deformations of large arrays; this can be achieved

by assigning a representative Gaussian probability-density function and an

appropriate correlation function to the deformation amplitudes. The probabil-

istic expectation of the far-field radiated power may be obtained by multiply-

ing the radiated power, which is a function of the array element positions, by

the probability density of the deformation amplitudes and integrating over the

possible amplitudes. The expression for the expectation is

E(P(6) : f P(B,z-z')f(z-z')d(z-z') (5)

9



-a a -0

Figure 2. "Hat Box" Function for the Correlation of Surface-Error
Amplitudes Having a Correlation Region of Dimension 2a
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where z and z' are the deformation amplitudes at positions x and x', P(e,z-z')

is the product of the voltage and its complex conjugate, and f(z-z') is the
2

Gaussian probability-density function, with zero mean and a variance. For a

hat-box correlation function whose correlation-region dimension of 2a is much

smaller than the array dimension 2L, the expression for the expected power of

a uniformly illuminated array is

E{P(6)} = (2L)2 isin(kLsine)2 e22 2
E(P(6)1 (2L) kLsinG ea o

a sin(kasine) -k a c C 1+ L kasine

The above expression has two terms. One term is the undistorted radiation

pattern reduced by an exponential function, and the other term is directly

related to the ratio of the size of the correlation region to the length of

the array. If the correlation region, 2a, is much smaller than the length of

the array, only the first term of the expected power is significant In this

case, the radiated power decreases exponentially with an increase in the

variance of z.

An array having Gaussian random deformations and a small correlation

interval has a radiation pattern whose gain decreases uniformly, as shown in

Fig. 3. The radiation patterns of arrays having modal deformations have

nonuniform changes in gain.

B. DETERMINISTIC DEFORMATIONS

A large space-based array will have slow mechanical oscillations. At any

instant in time, the continuous surface that spans the element positions can

be expressed as a deterministic function. The instantaneous element displace-

ments from the plane can be expressed as a sum of fundamental modes. The

fundamental modes satisfying the Dirichlet boundary conditions are odd-order

cosine and even-order sine modes:

11
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z (2m - 1)rx .2m(x7z(x) = V Iam_ Cos 2L + bm sin- - (7)
m 1( COS1 2L 2m 2Lm=1

The fundamental modes satisfying Neumann boundary conditions are even-order

cosine and odd-order sine modes:

z~)=a+ ( o2m-fx +b i (2m - 1)7x) (8)z(x) a0 + L a2m co2sL b2m-1 sin

m~~1 2L -

This section reviews three solutions to the radiation-pattern integral for a

uniformly illuminated, linear array having single-mode errors. One solution

is approximate for small-amplitude errors, the second is exact for discrete

angles, and the third is exact in terms of an infinite summation of paired

echoes. Numerical solutions computed by means of Simpson's rule are shown in

Appendix B.

1. SMALL-AMPLITUDE APPROXIMATION

The small-amplitude solution uses the truncated-series approximation for

the exponential function ex = 1 + x. The new integral is integrable to the

sum of the ideal pattern, sin~u/7u, and a small error pattern,

L

V(u) - 2L siniu , Ju z(x) exp(± jmu 2) dx (9)
-L

where z(x) is either a sine or a cosine mode of any order and u is defined as

follows:

ru = kLsine (10)

The pattern for an array having small-amplitude cosine errors is

n T nit . nit
nu cos- siniu - sin- cosru

V(u) ! 2L sin..u + jiu'2a { n 2 2 +u } (11)
Au(f._) _ (1u) ( )2 _ u)2

13



The pattern for an array having small-amplitude sine errors is

n n l. n

LS-iniu cos T  sinru uu sinT coszu
V(u) 2L n +Tu'2b { . - 22 (12)

nii2 2 2,

The denominator of the error terms, (u--) - (iu) , yields removable siseulari-

ties at us  ± , and a 1/u or 1/u2 taper for u < -1us[ and u ,us[. There-

fore, the error terms (see Figs. 4-7) have maxima for values of u in the

vicinities of + 2 and - 2" For sine errors the error term is odd (i.e.,
22

asymmetric) about u = 0; thus the error pattern adds to the ideal pattern

around u + ii2 and subtracts from the ideal pattern around u = - 2! producing
an asymmetric pattern. For cosine errors the error terms are even (i.e.,

symmetric) about u = O, so the total pattern is symmetric; however, the error

term has nonzero values at the nulls of the ideal pattern, so the total

pattern has filled-in nulls.

2. DISCRETE-ANGLE SOLUTION

The integral for the radiation pattern of a uniformly illuminated line

source having single, even-mode deformations has a form similar to the

integral representation of the Bessel function of the first kind (integtr

order):

J(z) i cos(zsiny - my) dy (13)m 0

The transformation of Eq. (4) for an even-sine mode into the form of Eq. (12)

yields
nr

v(u) -n2 j n expi (- _n + ?1u" - sinn) I dri (14)
2

The variabl3 transformation for the order of the Bessel function is a function

of the far-field angle. Therefore, the solution for the radiation pattern in

terms of Bessel functions of integer order is valid only at the angles for

14
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which 2u/n takes on integer values. The details for the development of this

discrete-angle solution are presented in Appendix A.

3. PAIRED-ECHO ANALYSIS

The paired echo is an intuitive method of understanding the distortion of

a Fourier transform process such as might serve as a model for a filter or, in

this case, a far-field pattern. Wheeler6 uses a filter to describe the

interpretation of amplitude and phase errors. In this example, the process is

a Fourier transformation from the frequency domain of the signal, where the

filter works, to the time domain of the signal. Amplitude and phase errors in

the frequency domain translate to paired echoes of the signal in the time

domain. The echoes from amplitude errors are equal in absolute value and

sign, and are symmetrically placed about the signal (a positive pair); the

echoes from phase errors are equal in absolute value, are opposite in sign,

and are symmetrically placed about the signal (a negative pair). Positive and

negative pairs are illustrated in Figs. 8 and 9.

The far-field pattern of an antenna is a Fourier transform of the

aperture fields. Modal deformations of the aperture surface produce paired

echoes in the far-field pattern. For an array having an illumination function

that is even about the center of the array, the sine errors produce positive

and negative pairs in the far field and the cosine errors produce only posi-

tive pairs. Negative pairs contribute to an asymmetric pattern because they

subtract from the ideal pattern on one side and add to it on the other.

For a uniformly illuminated array having single-mode errors, the paired

echoeF are expressed as follows.

For cosine errors the far-field pattern expressed in terms of its paired

echoes is
a

a w J 71u, n)jo(U, )IolU+ ~ ik J2k[ L
V(U) J0 (ITu' FkVo(u) + ( a [V0(u+kn) + V0 (u-kn)]

a

j I k {2 kul((u .))nj Volu-r )nll (15)
k:O JJ(u' a v

19
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For, sine errors the far-field pattern expressed in terms of its paired echoes

is

a

V(U) j J0 (ru' E n)[V 0(u) + a [V0 (u+kn) + V0(u-kn)]
k=l Jo(lu' )

b

2k+l(u' , L n)Vo[u+(k+. )nJl V[u-(k+nl] (16)
k=O Jo(-u' Ln)

where Vo(u) is the ideal array pattern. Vo(u+ue) + Vo(u-ue) is a positive

pair and Vo(u+ue) - Vo(U-Ue) is a negative pair. The radiation pattern for an

array having an illumination function that is expressed as a Fourier series of

position on the array may be similarly expressed in terms of paired echoes.

The first two echoes for the n = I cosine and sine modes are illustrated in

Figs. 10 and 11.
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III. PATTERN DISTORTION

The quality of the radiation pattern of an array depends upon the

coherent interference of the contributions of the individual array elements.

The phase errors due to the displacement of elements from the plane degrade

the pattern quality, which is measured by (1) the gain, shape, beamwidth, and

pointing accuracy of the main beam; (2) the sharpness of the nulls; and

(3) the height of the innermost sidelobes. As was shown in Section II.A,

random errors on a large array will effectively reduce the amplitude of the

radiated power at all the far-field angles, thereby affecting the gain but not

other qualities of the pattern. Single-mode errors have distinctive effects

on the radiation pattern, as is suggested by the form of the small-amplitude

approximation and as illustrated in Appendix B.

The effect of sine errors on the radiation pattern is a shifted boresight

and an asymmetric pattern having higher sidelobes on one side of the main beam

than on the other. The shifted boresight is explained by the linearity of the

sine function at the origin, or the center of the array, which translates to

linear phase errors; linear phase errors, in turn, steer the main beam to an

angle that depends upon the peak amplitude of the errors. The asymmetry is

due to the odd (i.e., asymmetrical) nature of the sine function. For the mode

order n = 1, the main beam retains its gain, shape, and beamwidth, and the

nulls retain their sharpness; however, the higher-order modes lose gain in the

main beam and the nulls begin to fill in.

The effect of cosine errors on the radiation pattern is filled-in nulls

and raised sidelobes. The filled-in nulls cause the first sidelobes to become

part of the main beam. For large-amplitude errors, the main beam bifurcates

when the edges of the array become out of phase with respect to the central

portion of the array.



IV. ILLUMINATION TAPERS

Some applications requiring low sidelobes use arrays having tapered

illumination functions. Single-mode errors, cosine modes in particular, raise

the sidelobes of arrays having tapered illuminations, much as they raise the

sidelobes of uniformly illuminated arrays. In order to meet the low-sidelobe

requirement while compensating for expected modal errors, deformable arrays

should be designed to have even lower sidelobes than would be the case for an

ideal array in which deformation does not occur. One can prevent some effects

of modal deformations of small order and amplitude by illuminating the array

nonuniformly. In particular, the broadening of the main beam may be minimized

by means of a cosine illumination function. A beamwidth factor can be used to

evaluate illumination functions according to the degree to which they minimize

beam broadening. Data for the ideal pattern are listed in Table 1. The

beamwidth factor, which is defined as

(BEAMWIDTH C- uSTORTED PATTERNBWF 100 BEAMWIDTH OF NOMINAL PATTERN - (7)

is used in Tables 2 through 4 to compare the success of several illumination

functions for errors of equal amplitude and mode.

The uniform, triangular, and cosine illumination functions illustrated in

Figs. 12 through 14 were evaluated. Using the beam-broadening factor of the

uniform illumination function as a benchmark, the triangular illumination

function and the first- and second-power cosine illumination functions have

poor beam-broadening factors, and the higher-power cosine illumination

functions have good ones. However, the ideal beamwidths of the higher-power

cosine functions are large. In general, the beam broadening that results from

single-mode errors is less for illumination functions that produce patterns

having very low sidelobes than it is for illumination functions that produce

patterns having moderately low sidelobes. The numerical solutions to the

radiation patterns of arrays having tapered illuminations and single-mode

errors are shown in Appendix B.
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Figure 12. Uniform Illumination Function
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Figure 13. Triangular Illumination Function
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Figure 14. Cosinusoidai ilumination Function
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V. SUMMARY

Instantaneous mechanical deformations of a large, oscillating planar

array may be expressed by mechanical modes. The pattern distortion corre-

sponding to single-mode deformations has distinct characteristics that

differentiate it from random deformations that yield a uniform decrease in

gain. This report offers several interpretations of this pattern distortion.

The small-amplitude approximation expresses the total pattern as a sum of

the ideal pattern and an error pattern. One can determine the regions of the

pattern for which the error term is significant by inspecting the error

term. In these regions, the characteristics of the pattern distortion are

dictated by whether the error pattern subtracts from or adds to the ideal

pattern. When the small-amplitude approximation is used to find a numerical

representation of the total pattern, .the discrete-angle solution may be used

to measure the accuracy of the results.

The paired-echo interpretation offers a perspective of the pattern

distortion as pairs of echoes of the ideal pattern. The paired-echo analysis

offers an intuitive interpretation of the pattern distortion by directly

indicating the regions in which the echoes either add to or subtract from the

ideal pattern.

Aperture-illumination functions that lower the sidelobes are typically

used for applications requiring selective coverage. Modal deformations will

cause pattern distortion that raises the sidelobes, broadens the main beam,

and shifts the boresight by predictable amounts. The technique reported here,

which uses the beamwidth factor to compare the robustness of several illumina-

tion functions, may be used to select an illumination function that compen-

sates for the raised sidelobes caused by the predicted modal deformations of

the array.
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APPENDIX A. DISCRETE-ANGLE SOLUTION FOR EVEN-MODE DEFORMATIONS

This appendix details the development of an exact, discrete-angle

solution for the radiation pattern of a uniformly illuminated array having

even sine-mode deformations. The companion solution for even cosine-mode

deformations is also presented.

The principal-plane pattern for a uniformly illuminated, x-directed line

source having deformations in the z-direction at the far-field angle 8 is

L
V(6) : f exp{jk [t x sine + z(x) cose]} dx (Al)

-L

where "+" is for 4 = 00 and "-" is for * = 1800.

Assuming a sinp' ine-mode deformation and transforming the integration

variable to n = r i - brings the integral into the form

n,,

_L 2  2u b
V(u) = n f explj[± n-- n + 1u, L-- sinn)] dn (A2)

n 7

2

which is similar to the integral representation of the Bessel function of the

first kind and integer order1:

J (z) 1 f cos(zsiny - my) dy (A3)m IT 0

In the Bessel function representation, the order m, which corresponds to ±2u/n

the array pattern expression, is an integer; z, which corresponds to zu"

bn/L, is a real number. In the array pattern expression, u is a real function

of the far-field angle e. Therefore, the similarity of the array pattern

expression to the Bessel function's representation is valid only for integer

values of 2un, or only at discrete angles.
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Assume that ±2u/n has the integer value m. The array pattern expression,

transformed to the Bessel function variables, is

n,,

2
V(m,z) - f cos(mn + zsinn) dn (A4)

0

n

If n is even, Eq. (A5) may be expressed as two sums of integrals:

n

V(m,z) L n cos(mkr) f cosmq cos(zsinn) dn

k:O 
0

n _
4 L 2 -I

- 2 cos(mk7) cos(k7) f sinmn sin(zsinn) dn (A5)
k=O 0

These are, in terms of integer-order Bessel functions,2

n

V(m,z) cos(mk7)[1 + (-I)m] 1 (z)nitK= 2K:O

n1

4L 2 cos(mk) cos(k)[1 - (-1 )m
]  1 J (z) (A6)

The solution for an even-cosine mode is similar. The discrete-angle

expressions for the even-sine and even-cosine modes are as follows:

Even-Cosine Modes

2L cos(-) Jm(Z), m even
V(m,z) 

2

j2L sin(M2) Jm(z), m odd
0(A7)

40



Even-Sine Modes

2LJm (z), m even
V(mn,z) -

-2LJm (z), m odd (A8)

These expressions produce exact results for the array pattern at discrete

angles. They are useful for measuring the accuracy of approximations of the

array pattern, such as the small-amplitude approximation described in Section

II .B.1.
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APPENDIX B. RADIATION PATTERNS
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,
spectroscopy, optical resonators, beam control, atmospheric propagation, laser
effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and

* radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, rhermiontc emission, photo-
sensitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiomet-y, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component lailure analysis ar reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere,
remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.


